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Attosecond inner-shell lasing at ångström 
wavelengths

Thomas M. Linker1,2 ✉, Aliaksei Halavanau3, Thomas Kroll4, Andrei Benediktovitch5, Yu Zhang1, 
Yurina Michine6, Stasis Chuchurka5, Zain Abhari2, Daniele Ronchetti5,7,8, Thomas Fransson1,9, 
Clemens Weninger10,11, Franklin D. Fuller10, Andy Aquila10, Roberto Alonso-Mori10, 
Sébastien Boutet10, Marc W. Guetg3, Agostino Marinelli1,3, Alberto A. Lutman3, 
Makina Yabashi12,13, Ichiro Inoue12,14, Taito Osaka12, Jumpei Yamada12,15, Yuichi Inubushi12,13, 
Gota Yamaguchi12, Toru Hara12, Ganguli Babu16, Devashish Salpekar16, Farheen N. Sayed16, 
Pulickel M. Ajayan16, Jan Kern17, Junko Yano17, Vittal K. Yachandra17, Matthias F. Kling1,10,18, 
Claudio Pellegrini3, Hitoki Yoneda6, Nina Rohringer5,7 & Uwe Bergmann2 ✉

Since the invention of the laser, nonlinear effects such as filamentation1, Rabi cycling2,3 
and collective emission4 have been explored in the optical regime, leading to a wide 
range of scientific and industrial applications5–8. X-ray free-electron lasers (XFELs) 
have extended many optical techniques to X-rays for their advantages of ångström- 
scale spatial resolution and elemental specificity9. An example is XFEL-driven inner- 
shell Kα1 (2p3/2 → 1s1/2) X-ray lasing in elements ranging from neon to copper, which has 
been used for nonlinear spectroscopy and development of new X-ray laser sources10–16. 
Here we show that strong lasing effects similar to those in the optical regime can occur 
at 1.5–2.1 Å wavelengths during high-intensity (>1019 W cm−2) XFEL-driven Kα1 lasing of 
copper and manganese. Depending on the temporal XFEL pump pulse substructure, 
the resulting X-ray pulses (about 106−108 photons) can exhibit strong spatial 
inhomogeneities and spectral splitting, inhomogeneities and broadening. 
Three-dimensional Maxwell–Bloch calculations17 show that the observed spatial 
inhomogeneities result from X-ray filamentation and that the broad spectral features 
are driven by sub-femtosecond Rabi cycling. Our simulations indicate that these X-ray 
pulses can have pulse lengths of less than 100 attoseconds and coherence properties 
that provide opportunities for quantum X-ray optics applications.

Strong lasing effects such as filamentation and Rabi cycling have 
allowed us to develop optical techniques for various uses, from fun-
damental studies of electrons, atoms, molecules and materials to 
cutting-edge scientific and industrial laser applications5–8,18–20. There 
has been a growing experimental effort to extend optical nonlinear 
and strong-field techniques to the X-ray regime with intense ultra-
short pulses provided by X-ray free-electron lasers (XFELs). This work 
includes the generation of multiple core holes21–28, X-ray-optical wave 
mixing29 and X-ray second harmonic generation30. There has even 
been recent work to extend XFEL experiments to the attosecond 
regime through the development of new bunch compression schemes 
and soliton-like amplification methods, leading to next-generation 
attosecond X-ray science31–39. Despite these successes, investigation 
of higher-order nonlinear processes such as filamentation and Rabi 

cycling has been lacking, especially in the hard X-ray regime—that is, at 
ångström wavelengths. Extending nonlinear techniques to hard X-rays 
is essential for samples requiring large penetration depth, spatial 
resolution and high fluorescence yield offered by hard X-ray excita-
tions40. In the optical regime, the physical origin of filamentation 
and its associated spectral broadening originates from third-order 
sample nonlinearities predominantly arising from the Kerr effect 
and plasma generation that modify the refractive index7. In the case 
of hard X-rays, the index of refraction is very close to unity, and fila-
mentation is traditionally not expected to occur. Rabi cycling2—the 
periodic modulation of populations in two-level systems within a 
time-varying field—has been observed in the extreme ultraviolet 
(XUV) and soft X-ray range but has not been reported at ångström 
wavelengths41–43.
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Here we report the observation and description of laser filamentation 
and Rabi cycling in superfluorescent inner-shell lasing at the 5.9 keV 
(2.2 Å) Mn Kα1 and 8.05 keV (1.5 Å) Cu Kα1 lines. Angular profiles of the 
stimulated emission analogous to those seen in laser filamentation are 
observed and determined to be formed from a balance of spontaneous 
emission, population inversion and self-amplification with diffraction. 
Direct observation of Rabi frequencies greater than 5 eV is extracted 
through the self-induced Autler–Townes44,45 splitting of the stimu-
lated emission spectra, indicating X-ray-induced coherent attosecond 
population dynamics. Our simulations show that these strong lasing 
phenomena can lead to the generation of isolated attosecond X-ray 
pulses, even if the XFEL self-amplified spontaneous emission (SASE) 
pump pulse is much longer.

Stimulated X-ray emission
The experiments were performed at the nanofocus instrument in 
Experimental Hutch 5 (EH5) at beamline 3 at the Spring-8 Ångström 
Compact Free Electron Laser (SACLA) in Hyogo, Japan, and at the Coher-
ent X-ray Imaging instrument at the Linac Coherent Light Source (LCLS) 
at SLAC National Accelerator Laboratory. Both instruments used highly 
focused (100–150 nm diameter), intense (on order of 1019–1020 W cm−2) 
SASE XFEL pulses tuned above the K edges of Mn (6.54 keV) and Cu 
(8.98 keV), respectively. Spectral and angular analysis of the emission 
signal was performed using a flat Si analyser crystal dispersing the 
emission signal onto a two-dimensional (2D) charge-coupled device 
(CCD) detector with one spectral axis and one spatial (angular diver-
gence) axis depending on how the diffraction plane of the Si analyser 
was aligned to the beam (vertically at LCLS, horizontally at SACLA). 
The schematics of this geometry, which has been used in previous 

experiments12–15, is shown in Fig. 1a. The resulting 2D spectral–angular 
profiles (2D profiles) in Fig. 1a show the spectral (dispersive) direction 
indicating the photon energy of the emission signal vertically, and the 
spatial (non-dispersive) direction, indicating one angular (ϕ) direc-
tion of the emission signal for each wavelength relative to the forward 
direction, horizontally. In this setup, a monochromatic emission signal 
with large angular divergence (in both directions) would show only 
a horizontal line in the 2D profile, as the Bragg analyser rejects the 
angle–wavelength mismatch in the dispersive direction. A broadband 
emission signal with large angular divergence would give a wide signal 
in the 2D profile, both vertically and horizontally. As will be seen in 
the single-shot 2D profiles discussed throughout this paper, strong 
lasing effects can cause spatial and/or spectral inhomogeneities and 
broadening. A more detailed description of the experimental setup and 
parameters is provided in the Supplementary Information.

To model stimulated X-ray emission, we solve the 3D Maxwell–Bloch 
equations in a continuous variable scheme for the atomic variables as 
described previously17. The stimulated emission process for the Kα1 line 
is shown in Fig. 1b,c, in which an incident SASE XFEL pulse ionizes the 
Mn/Cu atoms by simultaneously removing many 1s electrons, creating 
an excited state population inversion. A spontaneously emitted Kα1 
photon resulting from the relaxation of a 2p3/2 electron into the 1s1/2 core 
hole can stimulate the emission of a second Kα1 photon along the direc-
tion of the core hole excited states. This results in a cascade of amplified 
spontaneous emission of Kα1 photons as shown in Fig. 1b. As the optical 
path length increases, the influence of the radiation field on the phases 
of the atomic transition dipoles increases. This causes the transition 
dipole moments to synchronize, leading to much faster emission, short-
ening the stimulated emission pulses and enhancing their peak power. 
As in the optical regime46, this can eventually lead to Rabi cycling and 
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Fig. 1 | Experimental setup and concept of stimulated emission. a, The 
highly directional stimulated emission signal is analysed with a flat Si(220) 
crystal with the Bragg angle centred at the Mn or Cu Kα1 line followed by a 2D 
CCD detector. b, Stimulated emission process is initiated by a SASE pump pulse 
ejecting many 1s1/2 electrons, leading to emission of Kα1 photons when 2p3/2 
electrons fill the 1s1/2 core holes. During stimulated emission, Kα1 photons 
emitted along the forward direction stimulate emission of more Kα1 photons, 

resulting in exponential gain. c, State diagram used in the 3D Maxwell–Bloch 
theory to simulate stimulated emission process. Atoms are excited from an initial 
ground state |g⟩ to a set of upper levels |u⟩ corresponding to the two possible 1s1/2 
core hole states with differing magnetic quantum (m = ±1/2). The Kα1 transition 
is to a set of four lower levels |l⟩ corresponding to four possible 2p3/2 core hole 
final states with differing magnetic quantum numbers (m = ±3/2, ±1/2).
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generation of pulses much shorter than the excited state (core hole) 
lifetime. We model the Kα1 transition in Mn/Cu with a six-level density 
matrix consisting of two upper levels |u⟩ corresponding to two possible 
1s1/2 core hole excited states with differing magnetic quantum (m = ±1/2) 
and four lower levels |l⟩ corresponding to four possible 2p3/2 core hole 
final states with differing magnetic quantum numbers (m = ±3/2, ±1/2). 
The initial population of the |u⟩ levels is generated by non-resonant 
photoionization from the initial neutral ground state |g⟩, as shown in 
Fig. 1c. All relevant ionization, fluorescence and Auger–Meitner decay 
channels are then considered for the upper and lower levels (see Sup-
plementary Information and ref. 17 for further details).

Filamentation
We first focus on stimulated emission signals primarily exhibiting fila-
mentation qualities without strong spectral broadening. This describes 
most of the data taken at LCLS, where the peak intensity in the SASE 
pump pulses was lower than at SACLA. Figure 2a,b shows two exam-
ples of 2D profiles for stimulated emission from an NaMnO4 solution 
measured at LCLS. Although mainly a single spot is seen along ϕ in 
Fig. 2a, two hotspots are seen in Fig. 2b. In neither case, the dispersive 
direction shows notable spectral broadening, with most of the signal 
occurring at the Kα1 photon energy. Similar 2D profiles, some with even 
more than two hotspots, were also observed in MnCl2 solutions and 
Mn foils at LCLS (Extended Data Fig. 1 and Supplementary Fig. 3). To 
understand how these hotspots can form during stimulated emission, 
we first simulate the spectra generated by a single weak SASE spike at 
solution density. The calculated real-space xy profile of the stimulated 
emission at the end of propagation through the medium (z-axis is the 
propagation axis) is plotted in Fig. 2c. The xy profile shows two hotspots 
along the y-axis, indicative of a filamentation process. To simulate the 
2D profiles of our measured signal, we compute the intensity of the 
far-field stimulated emission and propagate it through the response 
function of the Bragg analyser (Supplementary Figs. 4 and 5). Figure 2d 
shows the calculated 2D profile of the stimulated emission, in which the 
ϕ axis is aligned with the x-axis of the xy profile shown in Fig. 2c. Only 
one spot is apparent. Figure 2e shows the calculated 2D profile of the 
stimulated emission, in which the ϕ axis is aligned with the y-axis of the 
xy profile shown in Fig. 2c, and two spots appear. These calculated 2D 
profiles shown in Fig. 2d,e are representative of the two measured 2D 
profiles shown in Fig. 2a,b. This shows that filamentation is detected 
only in the 2D profile if the hot spots are aligned with the non-dispersive 
ϕ axis. Filamentation hot spots can occur in any direction, resulting in 
a variety of inhomogeneities in 2D profiles, but as there is no marked 
spectral broadening, these inhomogeneities occur mainly along the 
ϕ axis. As the amplified spontaneous emission process starts from 
noise, we do not expect simulated 2D profiles to perfectly match any 
observed 2D profile, but rather to capture the trends.

Figure 2f shows the temporal profile of a simulated Gaussian pump 
pulse (red) that mimics a single SASE spike (pulse length of about 
235 attoseconds full width at half-maximum (FWHM), intensity around 
1019 W cm−2) and the temporal profile of Mn Kα1 stimulated emission 
(blue) spatially integrated over the transverse axes at the end of the 
pulse propagation. Our simulation indicates that the stimulated emis-
sion pulse generated from the SASE spike under conditions leading to 
filamentation has approximately 600 attoseconds FWHM pulse length. 
Snapshots of the filamentation dynamics that lead to the formation 
of the hotspots are plotted in Fig. 2g, showing several xy profiles of 
the stimulated emission, as it propagates through the sample. At the 
beginning of the propagation, the signal is dominated by spontane-
ous emission, resulting in a wide and random distribution of the emit-
ted radiation in space. As stimulated emission begins to dominate, it 
focuses towards the centre of the pump power, experiencing a gain 
guiding effect that creates a high buildup of photons within a bounded 
region that can be much smaller than the pump focus. In this bounded 

region, multiple hotspots (filaments) can form as diffraction competes 
with the field amplification. On exhaustion of the pump, the dynamics 
become diffraction-dominated, resulting in a nearly free propagation 
regime (see also Supplementary Video 1).

In both data and simulations, we find the distribution of angular 
hotspots for a given pump pulse to be highly variable from shot to 
shot, as these hotspots are determined by quantum fluctuations that 
seed the spontaneous emission process (see Supplementary Figs. 6–9 
for more discussion). In most of the measured shots, we detect only 
a single amplified mode (Supplementary Fig. 6), but, as shown in 
Fig. 2d, we are sensitive only to multiple hotspots if they occur along 
the non-dispersive direction (y → ϕ). Our 3D Maxwell–Bloch simula-
tions, using the full (approximately 30 fs) SASE pump pulses (with 
multiple spikes) used in the experiments at LCLS, show that the ground 
state is completely depopulated on the rise of the pump pulse (for 
more discussion, see Supplementary Fig. 10). This important finding 
explains why using a single spike to represent the SASE pump pulse in 
our simulations can well reproduce the 2D profiles measured at LCLS.

Rabi cycling and spectral broadening
We next examine the transition into the stronger lasing regime, in 
which spectral broadening occurs. We focus our discussion on spec-
tral broadening and self-induced Autler–Townes splitting, noting that 
we have also observed the formation of Mollow triplets (see Extended 
Data Fig. 2; for discussion, see the Supplementary Information and 
Supplementary Figs. 11 and 12). Figure 3a shows the spectral width 
compared with the number of photons for 29,000 single-shot spectra 
from NaMnO4 taken at LCLS. A constant spectral width over several 
orders of magnitude of gain, indicative of the buildup transform-limited 
pulses12, is followed by strong spectral broadening beginning at around 
106 photons per pulse in the saturation regime. Deep in saturation, the 
main signal is redshifted, exhibiting two peaks, as shown in Fig. 3b. It is 
important to note that the Kα2 emission signal is strongly suppressed 
in stimulated emission12 and would appear at 5,887 eV for NaMnO4. The 
measured 2D profile (Fig. 3b, top) can be simulated using a NaMnO4 
solution pumped by a high-intensity single SASE spike displaying the 
same peak splitting and redshift (Fig. 3b, bottom). The correspond-
ing pulse length is 320 attoseconds FHWM (Supplementary Fig. 17). 
Shifts or broadening due to the electronic structure of the medium 
can be ruled out for the origin of the shift and splitting (Supplementary 
Figs. 13–17 and ref. 12). Furthermore, we see only such pronounced 
splitting and red shift when entering the strong saturation regime (Sup-
plementary Figs. 13–17). Our simulations show that this spectral feature 
is a result of the self-induced Autler–Townes splitting, consistent with 
previous theoretical work45. The splitting of about 3.5 eV observed in 
the spectra measured at LCLS corresponds to the Rabi frequency. At 
SACLA, where the pump pulse intensity was higher, we observed larger 
Autler–Townes splittings greater than 5 eV for a 7-µm copper foil and 
the corresponding simulation yields a 230-attosecond FWHM pulse 
length (Supplementary Fig. 19). This splitting only occurs when the 
population is inverted on a time scale much shorter than the core hole 
lifetime45, which further indicates that these strong lasing shots are 
driven by a single strong spike from the SASE pump pulse.

We now show that the observed asymmetry of the Autler–Townes 
splitting requires both forward and transverse radiation propagating 
in a highly inverted gain medium. Figure 3c shows the calculated field 
intensity and phase dynamics for stimulated emission in the high-gain 
regime (high density and high pump intensity) at the focus of the pump 
pulse, as well as the fully spatially integrated spectral intensity as a 
function of the propagation axis. The top row shows the dynamics 
when transverse propagation of the fields is not included (1D dynam-
ics), and the bottom row shows when it is included (3D dynamics). 
Both cases exhibit intensity ringing with stronger effects in the 1D case. 
Similar to the optical regime46, the ringing is much weaker than the main 
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emission pulse, and the main emission pulse length is much shorter 
than the excited state (core hole) lifetime. For the 1D dynamics, we see 
the expected π phase shift in the intensity ringing during Rabi cycling 
and a corresponding symmetric spectral profile that is not consistent 
with our measured 2D profiles. For the 3D case, the phase dynamics 
are much more complex on entering the Rabi cycling regime. This 
results in intensity ringing with a time-dependent phase, generating 
a non-symmetric spectral profile, consistent with our measured 2D 

profiles. We find that the phase is nearly constant within the FWHM 
of the stimulated emission pulse (Supplementary Fig. 19). Driven deep 
into saturation, the Autler–Townes splitting becomes washed out, and 
the spectrum becomes broad and inhomogeneous when 3D dynam-
ics are considered. For these cases, our simulations indicate the pulse 
lengths are of the order of 100 attoseconds. This is the case for a large 
fraction of the lasing shots obtained at SACLA, where we found that 
78% of all stimulated emission shots from a 20-µm-thick Cu metal foil 
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Fig. 2 | Filamentation of stimulated emission. a,b, The 2D profiles taken at 
LCLS for NaMnO4 showing hotspots in their spatial direction (ϕ). c, Real-space 
(xy) simulation of stimulated emission leaving the medium with two hot spots 
along the y-axis. d,e, Simulation of 2D profiles based on c with the spatial direction 
(ϕ) corresponding to either the x-axis (d) or the y-axis (e). The figures show that 
hot spots are more dominant in the 2D profile when they are aligned with the 

spatial direction (ϕ). f, Temporal profile of pump (dashed) and stimulated 
emission (red) for simulation shown in c. g, Snapshots showing xy profile of the 
stimulated emission simulation shown in c as it propagates in the gain medium, 
showing the self-focusing and filamentation process (see the Supplementary 
Information for full video).
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displayed broad inhomogeneous spectra (see Extended Data Fig. 3 and 
discussion in the Supplementary Information).

Figure 4a shows an example of a shot deep in saturation taken at SACLA 
for a MnO-loaded carbon film. The 2D profile exhibits spatial and spec-
tral inhomogeneities and large spectral broadening. For comparison, a 
simulation under similar conditions is shown in Fig. 4b. Figure 4c shows 
the temporal profile of the SASE pump pulse (blue dashed) used for the 
simulation and the temporal response of the stimulated emission signal 
(red) resulting in a pulse length of 120 attoseconds FWHM. Here, a sin-
gle spike of the SASE pump pulse completely depopulates the ground 
state and drives the emission deep into saturation. The Autler–Townes 
splitting is washed out, resulting in a broad and inhomogeneous spec-
trum. We note that the simulation is slightly more spatially inhomoge-
neous than the experiment. We attribute this to the simulation being 

performed at the sample average density, whereas the film density 
was not uniform (Supplementary Information). Figure 4d,g shows fur-
ther examples of 2D profiles of single shots deep in saturation for an 
MnO-loaded film and a Cu 20 µm foil. Apart from the spatial and spectral 
inhomogeneities and large spectral broadening, spectral fringes with 
regular spacing start to appear in Fig. 4d, and they can be seen more 
prominently in Fig. 4g. We have previously observed and described 
2D profiles exhibiting well-defined spectral fringes for Mn-stimulated 
emission15. These well-defined fringes result from the interference of 
temporally coherent stimulated emission pulse pairs generated from 
two separate SASE spikes within the pump pulse. The fringe spacing 
ΔE is related to the pulse spacing Δt through the Fourier analysis in the 
Bragg spectrometer with ΔtΔE = h = 4.136 fs eV, where h is the Planck’s 
constant. The fringe contrast and envelope depend on the pulse length, 
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emission peak. Bottom, 3D simulation showing modulation during the Rabi 
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longer temporally coherent with the parent emission spike, indicating self-phase 
modulation of the radiation during 3D propagation. This asymmetry is consistent 
with the experimental 2D profile (b).
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coherence and relative strengths of the two pulses. Figure 4e,h shows 
simulations of 2D profiles exhibiting fringes comparable to the meas-
ured spectra (Fig. 4d,g). Figure 4f,i shows the corresponding temporal 
profiles of SASE pump pulses (blue dashed) used for the simulations 

and the temporal profiles of the stimulated emission signals (red). The 
pulse lengths of the first pulses in the simulated emission signals are 
100 attoseconds and 90 attoseconds FWHM, respectively, as shown 
in Fig. 4f,i. Figure 4f shows that the second emission pulse is 20 times 
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Fig. 4 | Broadening through Rabi cycling at high intensities. a, Experimental 
2D profile showing large spatial and spectral inhomogeneities and broadening 
for MnO film. b, Simulation of 2D profile showing similar features using a  
SASE pump pulse and the same average Mn density as in the experiment (a).  
c, Temporal profile of the SASE pump pulse (dashed) and stimulated emission 
signal (red) used in the simulation showing 120 attosecond FWHM pulse length. 
d, Experimental 2D profile showing large spatial and spectral inhomogeneities 
and broadening and the onset of spectral fringes with approximately 2 eV 
spacing for MnO film. e, Simulation of 2D profile showing similar features using 
a SASE pump pulse and the same Mn density as in the experiment (d). f, Temporal 
profile of the SASE pump pulse (dashed) and stimulated emission signal (red) 

used in the simulation (e). The resulting signal shows a strong pulse with 
100 attosecond FWHM length, and a much smaller second pulse, delayed by 
about 2 fs, corresponding to the fringe spacing. g, Experimental 2D profile 
showing large spatial and spectral inhomogeneities and broadening and  
the more pronounced spectral fringes with around 4 eV spacing for Cu foil.  
h, Simulation of 2D profile showing similar features using a SASE pump  
pulse and the same Cu density as in the experiment (g). i, Temporal profile of 
the SASE pump pulse (dashed) and stimulated emission signal (red) used in the 
simulation (h). The resulting signal shows two strong pulses with 90 attoseconds 
and 100 attoseconds FWHM pulse lengths. The pulses are delayed by about 1 fs, 
corresponding to approximately 4 eV fringe spacing.
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weaker than the first one, and yet weak fringe contrast can still be seen 
in the corresponding 2D profile in Fig. 4e. When the second emission 
pulse has similar intensity and pulse length to the first pulse (Fig. 4i), the 
corresponding 2D profile is broad and shows fringes with deep contrast 
(Fig. 4h). In this case, the stimulated emission temporal profile has high 
intensity displaying pulses with 100 attoseconds FWHM length.

We also observed spectrally broad 2D profiles showing deep fringes 
with spacings up to 8 eV, corresponding to pulse separations of about 
500 attoseconds (Supplementary Fig. 21). As shown in Fig. 4i, multiple 
deep fringes are indicative of two stimulated emission pulses with 
similar intensity and length. This is consistent with these pulses having 
a nearly constant phase (Supplementary Fig. 19). In this case, multiple 
deep interference fringes can occur only if the length of each pulse in 
the pair is much shorter than the corresponding temporal spacing, 
that is, much shorter than 500 attoseconds for an 8-eV fringe spacing.

Conclusions
We have demonstrated how stimulated emission of hard X-rays can be 
attuned to an optical laser in the strong lasing regime. Our simulations 
based on 3D Maxwell–Bloch theory17 show that spatial filamentation 
is driven through gain guiding effects in the transition from sponta-
neous to stimulated emission. Spectral broadening is driven by the 
self-compression of the stimulated emission pulse from Rabi cycling 
with sub-fs periods. This pulse compression is a key feature of the collec-
tive emission during superfluorescence, in which shortening of pulses 
is accompanied by an increase in their peak power46. Rabi cycling is the 
fundamental building block of most studies of coherent control of 
quantum systems. In many observed 2D profiles, the extracted Rabi fre-
quencies are greater than 5 eV (<0.86 fs), indicating our ability to drive 
coherent attosecond inner-shell population dynamics. Controlling 
these dynamics will be essential for new source development and the 
next-generation X-ray spectroscopy and quantum optics applications. 
The recent development of single-spike SASE XFEL pulses37,39 can help to 
better control these dynamics and heavier gain mediums with shorter 
lifetimes (for example, Lα emission of W or Hf at about 8 keV) can poten-
tially generate even shorter pulses well below 100 attoseconds. We are 
currently working on schemes to spatially and/or spectrally separate the 
stimulated emission from the pump pulse. As the angular divergence of 
the stimulated emission pulses is determined by the medium density 
and overall gain length of the sample, its divergence can be several 
mrad, which is larger than the divergence of a strongly focused pump 
pulse. This makes it possible to separate the signal spatially from the 
pump pulse by choosing an interaction point further downstream. 
Spectral separation can be achieved using a downstream filter with an 
absorption edge between the photon energies of the pump pulse and 
the stimulated emission. For a Cu gain medium, a 50-µm thick Cu foil 
transmits about 10% of the 8 keV Kα1 stimulated emission pulse while 
transmitting only about 3 × 10−6 of the 9 keV pump pulse.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09105-9.
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Extended Data Fig. 1 | Filamentation in different samples. Examples of filamentation taken at LCLS for different MnCl2 and Mn metal foils.



Extended Data Fig. 2 | Observation of Mollow triplets. Examples of Mollow triplets spectra at SACLA taken for Cu 7μm Foils. Further discussion and simulations 
in the Supplementary Information is provided to describe their formation.
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Extended Data Fig. 3 | Typical strong lasing spectra at SACLA. 25 random Strong Lasing Shots for Cu 20 μm Foils which all show broad and inhomogeneous spectra.


	Attosecond inner-shell lasing at ångström wavelengths

	Stimulated X-ray emission

	Filamentation

	Rabi cycling and spectral broadening

	Conclusions

	Online content

	Fig. 1 Experimental setup and concept of stimulated emission.
	Fig. 2 Filamentation of stimulated emission.
	Fig. 3 Transition to strong lasing and Rabi cycling.
	Fig. 4 Broadening through Rabi cycling at high intensities.
	Extended Data Fig. 1 Filamentation in different samples.
	Extended Data Fig. 2 Observation of Mollow triplets.
	Extended Data Fig. 3 Typical strong lasing spectra at SACLA.




