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ABSTRACT
With the help of newly developed X-ray free-electron laser (XFEL) sources, creating double core holes (DCHs) simultaneously at the same
or different atomic sites in a molecule has now become possible. DCH X-ray emission is a new form of X-ray nonlinear spectroscopy
that can be studied with a XFEL. Here, we computationally explore the metal K-edge valence-to-core (VtC) X-ray emission spectroscopy
(XES) of metal/metal and metal/ligand DCH states in a series of transition metal complexes with time-dependent density functional theory.
The simulated DCH VtC-XES signals are compared with conventional single core hole (SCH) XES signals. The energy shifts and intensity
changes of the DCH emission lines with respect to the corresponding SCH-XES features are fingerprints of the coupling between the second
core hole and the occupied orbitals around the DCHs that contain important chemical bonding information of the complex. The differ-
ence between delocalized/localized core hole models on DCH VtC-XES is also briefly discussed. We theoretically demonstrate that DCH
XES provides subtle information on the local electronic structure around metal centers in transition metal complexes beyond conventional
linear XES. Our predicted changes from calculations between SCH-XES and DCH-XES features should be detectable with modern XFEL
sources.
https://doi.org/10.1063/1.5111141., s

I. INTRODUCTION

One of the striking effects of intense X-ray-matter interaction
is the creation of multiple core holes. Theoretical insight into this
phenomenon was provided long before any realistic experiments on
double core hole (DCH) states were performed. More than three
decades ago, Cederbaum et al. studied DCHs in small molecules
theoretically and predicted that the electron binding energies asso-
ciated with DCHs at different atomic sites could sensitively probe
the chemical environment of the ionized atoms.1 Since then, there

have been several theoretical DCH studies and related spectroscopic
signals with various methods including many-body Green’s func-
tion,2–4 multiple configuration self-consistent field (MCSCF),5–13

density functional theory (DFT),8,9,11,14–18 time-dependent density
functional theory (TDDFT),19 Møller–Plesset perturbation theory,16

and the Z + 1 approximation,20 respectively.
DCH spectroscopy was originally studied with synchrotron

radiation,21–27 where the absorption of one photon is accompanied
by the ejection of two core electrons. In this process, the
correlation between the two ejected core electrons plays an
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important role. While multiphoton processes with synchrotron radi-
ation are unlikely, they become possible with more intense X-ray
free-electron laser (XFEL) pulses. Thanks to the rapid development
of XFEL sources, two-photon photoelectron spectroscopy or dou-
ble core hole (DCH) spectroscopy has been shown to be a pow-
erful tool to probe the chemical environment of specific atomic
sites in molecules.11,15,28–31 Recently, DCH states have been cre-
ated using XFEL pulses at the Linac Coherent Light Source (LCLS)
facility in neon,32 nitrogen gas,29,33,34 N2O, CO2 and CO,29 and
the aminophenol molecule.35 Differences between the photoelectron
spectral data taken with focused and unfocused laser beams were
studied in order to extract the DCH contribution to the signal.29

It is believed that two-site DCH (ts-DCH) spectroscopy provides
a more sensitive probe for the local chemical environment of the
excited atoms than does single core hole (SCH) spectroscopy.29,30

Mukamel et al. theoretically studied X-ray four-wave mixing spec-
troscopy involving DCHs.12,19,20 The corresponding experiments
require well-controlled intense X-ray pulses that are not currently
available. In this study, we focus on ts-DCH spectroscopy because
it is more sensitive for chemical analysis than single-site (ss) DCH
spectroscopy. Previous DCH spectroscopy experiments measured
photoelectrons28,29,36–38 and Auger electrons,24,33,34,37,39,40 which are
not suitable for solution samples common in chemistry. We pro-
pose the use of intense XFEL pulses to create DCHs at different sites
in the system and to study the corresponding X-ray emissions. We
envision that DCH-X-ray emission spectroscopy (XES) signals can
provide information beyond what single core hole X-ray emission
spectroscopy (SCH-XES) signals can tell us. Even though this spec-
troscopy has not been realized in transition metal complexes, we
hope our theoretical work in this manuscript can serve as a guide for
future experiments. Our findings suggest how the additional core
hole affects the local electronic structure of both core holes and
allows one to probe the electronic coupling between the two atomic
sites. In other words, the additional core hole offers more “control
knobs” to detect different occupied orbitals of the system and further
complement SCH-XES.

In this paper, we study ts-DCH spectroscopy from a theoreti-
cal standpoint using TDDFT. We calculate the VtC-XES41,42 signals
resulting from DCHs of a series of mono- and binuclear transition
metal model complexes. VtC-XES signals carry more chemical infor-
mation of the system than Kα and Kβ mainline emissions because
they directly probe the valence orbitals. For the binuclear complexes
with metal-metal direct bonds, the VtC-XES signals of the metal 1s
DCHs at different sites were studied. Mononuclear complexes with
different Mn oxidation states (II, III) have been used to investigate
the emissions of the metal-1s/ligand-1s DCH states, from which the
information on the chemical bonds between the metal center and the
coordinating atoms are revealed.

Here, we have focused on only two-site DCH XES signals and
not single-site DCH-XES, which could also be interesting. For deep
ss-DCHs (e.g., 1s/1s single-site DCHs), the overall effect of the sec-
ond core hole on the XES spectrum is mainly a constant shift of
all emission lines and thus less interesting. However, 1s/2p single-
site DCH-XES is more informative because the 2p core hole unlike
the spherical 1s core hole couples with the 3d and other valence
orbital in different ways. In collaboration with Fuller et al., recently,
we observed Fe1s/Fe2p single-site DCH Kα XES in Fe systems
at the SPring-8 Angstrom Compact free electron LAser (SACLA)

facility.43 In previous DCH photoelectron spectroscopy experi-
ments,29 XFEL pulses with a duration of ∼10 fs and an intensity over
1016 W/cm2 were used. Since hard X-ray core electron photoion-
ization cross sections are generally one order of magnitude smaller
than soft X-ray core electron photoionization cross sections,44 we
believe that even shorter and more intense XFEL pulses are needed
for metal-metal DCH spectroscopy experiments. The experiments
of metal/ligand DCH-XES simulated in this study are still not cur-
rently available because of the difficulty of combining hard and soft
XFEL pulses, but this technique could be possible with the planned
Tender X-ray Instrument (TXI) in the under-constructing LCLS-II
facility. Moreover, for metal/metal DCH-XES, the ultrashort lifetime
of DCH states not only requires extremely short and intense XFEL
pulses but also broadens the emission lines, which makes the obser-
vation of the fine features in experiment very challenging. This line
broadening issue could be remedied by using the recently developed
stimulated XES technique45–47 with which specific emission lines
could be selectively enhanced and narrowed.

II. COMPUTATIONAL DETAILS
All calculations were performed at the DFT and TDDFT

[within the Tamm-Dancoff approximation (TDA)48] levels of
theory with the NWChem quantum chemistry package.49 No sym-
metry restrictions have been applied. The PBE050,51 hybrid func-
tional was used for all calculations. All geometries were opti-
mized at the PBE0/Def2-TZVP52 level of theory. The X-ray
emission calculations have been performed using the FCH (full core
hole)/TDDFT approach described in our previous publication.53

Here, this approach has been extended to explore double core hole
states. In our SCH and DCH signal simulations, both α and β ion-
ization channels and all of their possible combinations were con-
sidered with equal weights. As an illustration, a sample NWChem
input file with notes is provided in the supplementary material. For
the binuclear complexes, all calculations have been performed in
the gas phase, while for the Mn mononuclear complexes with avail-
able VtC-XES experimental results, all calculations were performed
in the CH2Cl2 solution phase (ε = 9.08), which is described by the
conductorlike screening model (COSMO).54 For the TDDFT calcu-
lations of the core hole states, the Sapporo-TZP-201255/Def2-TZVP
basis sets have been used for the metal and nonmetal atoms, respec-
tively. In the localized N1s core hole calculations, in order to fix a
1s core hole at an individual N atom, we use an all-electron basis
set representation only on one N atom and use effective core poten-
tials (ECPs) and the corresponding basis sets to describe the other
N atoms. Specifically in this study, the Def2-TZVP basis set has
been used for the N atom with a 1s core hole, and the Stevens-
Basch-Krauss-Jasien-Cundari ECP56 together with the correspond-
ing polarized basis set57 has been used for the other N atoms without
1s core holes. In the SCH and DCH calculations of the studied bin-
uclear complexes, transitions to core holes at both metal atoms are
included.

III. RESULTS AND DISCUSSION
A. Binuclear transition metal complexes

We have studied the VtC-XES signals of metal 1s/metal 1s
ts-DCH states of binuclear transition metal complexes with strong
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metal-metal bonds. Polynuclear transition metal complexes with
direct metal-metal bonds58 have attracted the attention of chemists
for a long time, not only for their high bond orders (>3) but also for
their important applications in making metal-organic frameworks,
molecular conductors, photosensitizers, and catalysts.59 Results
from theoretical calculations on binuclear metal complexes with
metal-metal bonds have been reviewed recently.60 Here, we chose
one Fe complex Cp2Fe(μ-CO)2 (Fe-cplx, Cp = cyclopentadienyl)
and one Co complex (C4H6)2Co2(μ-CO) (Co-cplx) as candidate sys-
tems. The structures of the two complexes can be found in Figs. 1
and 2. The optimized Fe–Fe and Co–Co bond lengths are 2.130 and
2.110 Å, respectively. These bond lengths are close to the previously
reported theoretical values (2.120 Å for Fe–Fe and 2.142 Å for Co–
Co).61,62 Bond valence analysis shows that Fe-cplx has a formal bond
order of 361 and Co-cplx has a formal bond order of 4.62

In general, compared with SCH states, the second core hole in
ts-DCH states have two types of effects on XES: (1) emission energy
shifts due to the additional attractive potential of the second core
hole; (2) emission intensity changes due to the additional perturba-
tions on the molecular orbital (MO) shapes caused by the second
core hole. An electron in a localized orbital near the second deep 1s
core hole will feel a very strong attraction, resulting in a blue shift of
the corresponding emission energies. For other orbitals not localized
near the second core hole, the attraction and screening of the core
hole can have an overall effect on the orbital shape. On the other
hand, if the two core holes are uncorrelated or independent, both
emission energy and intensity changes will be negligible and should
result in a spectrum almost identical to the corresponding SCH-XES
spectrum. Comparing the emission energies and intensities (Figs. 1
and 2) allows one to shed light on the strength of the interaction
between the two core holes.

1. Fe-cplx
In Fig. 1(b), we show the calculated electron density difference

between the DCH and the SCH states of Fe-cplx (ρDCH − ρSCH).

One can clearly see that the hole on the right Fe atom induces
a significant electron density redistribution (blue means hole and
red means particle density). There are also some p-type electron
density changes on the Cp ring and O atom of the CO ligand,
which suggests that emission involving orbitals with similar char-
acter could be significantly affected by the second core hole. For
Fe-cplx, both the SCH and DCH spectra have a shoulder feature
above 7123 eV [labeled S1 in Fig. 1(a) and D1 in panel (b)], but the
DCH-XES peak is red-shifted by ∼0.5 eV and much weaker (relative
to the strongest peak) compared with the corresponding SCH-XES
feature.

Molecular orbital (MO) analysis of the representative tran-
sitions of the two peaks shows that the largest contribution of
each comes from the Fe–Fe d π orbitals (see Table S1 in the
supplementary material for the plots of the MOs discussed for Fe-
cplx). However, for the SCH-XES transition, the dominant MOs
are at the Fe atoms, while for the DCH-XES transition, MOs on
the Cp ring are also involved because of the second core hole.
The involvement of the Cp ring orbitals may explain the reduced
intensity of the corresponding transition in the DCH-XES spec-
trum. For the strongest SCH-XES features around 7120.4 eV (S2
and D2 in Fig. 1), the DCH-XES peak D2 is blue-shifted by ∼0.7 eV
compared to S2. Local Fe d orbitals and Fe–Fe d π orbitals con-
tribute significantly to such transitions, and the influence of the
second core hole on these transitions is manifest in the energy
shift.

The DCH-XES spectrum has relatively stronger shoulder fea-
tures between 7118 and 7120 eV [D3 and D4 on the high platform in
Fig. 1(b)], respectively. These transitions involve local Fe d orbitals
and Fe–Fe d σ bonding orbitals, which are also heavily affected by the
second core hole. These emission lines contain information about
the Fe–Fe direct bonding, but cannot be clearly resolved in the SCH-
XES spectrum as it is suppressed by the strongest peak S2 nearby.
The S3 peak mainly represents transitions from orbitals on the CO
ligands, while the D5 peak has many transition components from the
Cp ring C p orbitals, which again is the effect of the second core hole.

FIG. 1. Calculated SCH and DCH
Fe1s VtC-XES signals of Cp2Fe(μ-CO)2
(Fe-cplx, Cp = cyclopentadienyl). All cal-
culated spectra have not been shifted
and have been Lorentzian broadened by
1.3 eV. SCH and DCH spectra are scaled
differently for the convenience of plot-
ting. Stick heights in different panels are
not calibrated. (a) Calculated SCH Fe1s
VtC-XES signals. Important features are
labeled S1–7. The molecular structure is
also shown. Color code: brown, Fe; red,
O; dark gray, C; light gray, H. (b) Cal-
culated two-site Fe1s/Fe1s DCH Fe1s
VtC-XES signals. Important features are
labeled D1–9. The calculated electron
density difference between the DCH and
the SCH state is also shown (ρDCH
− ρSCH, surface isovalue = 0.005). Red
and blue denote positive and negative
values, respectively.
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FIG. 2. Calculated SCH and DCH Fe1s
VtC-XES signals of (C4H6)2Co2(μ-CO)
(Co-cplx). All calculated spectra have not
been shifted and have been Lorentzian
broadened by 1.4 eV. SCH and DCH
spectra are scaled differently for the
convenience of plotting. Stick heights
in different panels are not calibrated.
(a) Calculated SCH Co1s VtC-XES sig-
nals. Important features are labeled S1–
8. The molecular structure is also shown.
Color code: pink, Co; red, O; dark gray,
C; light gray, H. (b) Calculated two-
site Co1s/Co1s DCH Co1s VtC-XES sig-
nals. Important features are labeled D1–
9. The calculated electron density differ-
ence between the DCH and the SCH
state is also shown (ρDCH − ρSCH, sur-
face isovalue = 0.006). Red and blue
denote positive and negative values,
respectively.

Compared to S3, D3 is blue-shifted by ∼0.5 eV. All the other
peaks (S4–7 and D6–9) have dominant transition contributions
from the orbitals on the CO and Cp ligands, which are not heav-
ily affected by the second core hole, and thus similar in both
the SCH-XES and DCH-XES spectra. From the analysis above,
we see that the second Fe1s core hole energy shifts and inten-
sity changes in the higher energy Kβ2,5 region are affected to
a greater extent compared with the lower energy Kβ′′ features.
This is probably because that the Kβ2,5 features involve MOs with
more metal d orbital character than those involved by the Kβ′′
features.

2. Co-cplx
In Fig. 2(b), we also show the calculated electron density differ-

ence between the DCH and the SCH state of Co-cplx (ρDCH − ρSCH).
Similar to the case of Fe-cplx, one can see that the hole on the right
Co atom induces electron density changes around it and some p-type
electron density deficiency on the C4H6 ligand and O atom of the
CO ligand. Peak S1 is much stronger (relative to the strongest peak)
than D1 (see Fig. 2 for labeling). An inspection of the contributing
MOs involved in the transitions (see Table S2 in the supplementary
material) suggests that S1 involves localized Co d orbitals bonded
with p orbitals on the C4H6 ligand only around the SCH, while
peak D1 involves localized Co d orbitals of both Co atoms, which
reduces its emission intensity. The strongest DCH-XES peak D2 is
blue-shifted by about 0.8 eV compared to the strongest SCH-XES
peak S2. This shift is even larger than that of Fe-coplx (∼0.6 eV) and
should be detectable at the current levels of instrumentation. Both
transitions involve d orbitals at two Co sites interacting (bonding or
antibonding) with the C p orbitals on the C4H6 ligand. D3–5 form a
rising shoulder beside the strongest peak D2. Similar to the case of
Fe-cplx, D4 contains the information of direct Co–Co bonding and
the corresponding peak cannot be resolved in the SCH-XES spec-
trum. D6 is blue-shifted by around 0.5 eV compared to S5. Their

transitions have significant contributions from both CO p π orbitals
and σ bonding orbitals on the C4H6 ligands. Both S6 and D7 mainly
represent emissions from C and O 2s orbitals on the CO ligand. D7
is blue-shifted by about 0.4 eV compared to S6. Going further to
the lower energy range, D8 is shifted by ∼0.7 eV compared to S7
and D9 is shifted by ∼0.6 eV compared to S8. All of these can be
considered as transitions from the C 2s orbitals from the C4H6 lig-
ands. Unlike the Fe-cplx, for the Co-cplx, it seems that both Kβ2,5
and Kβ′′ emission lines are shifted in the DCH-XES spectrum com-
pared to the corresponding SCH-XES. As Kβ′′ emissions mainly
come from ligand orbitals, the shifting of these lines tells us in Co-
cplx the metal-ligand interaction is stronger than that in Fe-cplx, and
DCH-XES may contain coordination chemical information beyond
SCH-XES.

B. Mn mononuclear complexes
In Sec. III A, we studied the case of the VtC-XES of two-

site metal 1s/metal 1s DCH states, which, in principle, can be
created by a single intense hard X-ray pulse with enough bril-
liance. Here, we propose creating metal 1s/ligand 1s DCH states
in transition metal complexes, which may be achieved by com-
bining hard and soft X-ray pulses. Using typical Mn mononu-
clear complexes as candidate systems, we investigate the VtC-XES
of Mn1s/ligand 1s DCH states. Compared with metal core holes,
core holes on ligands might have greater impact on the valence
orbitals around the metal center, and therefore, the corresponding
VtC-XES spectra could be more informative about the coordination
bonds.

The calculated Mn1s SCH and Mn1s/N1s and Mn1s/Cl1s DCH
VtC-XES signals of a representative high-spin Mn(II) mononu-
clear complex [Mn(II)(terpy)Cl2] (Mn_II-cplx, terpy = 2,2′; 6′,2′′-
terpyridine, sextet) at the Mn K-edge are presented in Fig. 3. We
note that in all the Mn1s/Cl1s DCH calculations, the Cl1s core hole
is localized on one of the Cl atoms, while for the Mn1s/N1s DCH
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FIG. 3. Calculated SCH and DCH Mn1s VtC-XES signals of [Mn(II)(terpy)Cl2]
(Mn_II-cplx). All calculated spectra have been red-shifted by 14.07 eV to be
compared with the conventional SCH VtC-XES experiment63 and have been
Lorentzian broadened by 1.2 eV. SCH and DCH spectra are scaled differently
for the convenience of plotting. Stick heights in different panels are not calibrated.
(a) Experimental and calculated SCH Mn1s VtC-XES signals. Important features
are labeled S1 and S2. (b) Calculated Mn1s/N1s DCH Mn1s VtC-XES signals.
Important features are labeled D1–3. The molecular structure of Mn_II-cplx is also
shown. (c) Calculated Mn1s/Cl1s DCH Mn1s VtC-XES signals. Important features
are labeled D4–7.

calculations, the N1s core hole is delocalized to all N atoms. The
issue of localized/delocalized core hole in DCH calculations will be
addressed in Sec. III C. We focus on the important features labeled
in Fig. 3. S1 around 6535.4 eV is the strongest peak in the con-
ventional SCH VtC-XES spectrum, of which the major contributing
occupied MO has significant components as the Mn–N coordina-
tion bond and sigma bonds on the pyridine rings (see Table S3 in
the supplementary material). S2 at 6532.0 eV also represents transi-
tions from orbitals on the pyridine rings. For the Mn1s/N1s DCH
spectrum, the shoulder peak D1 around 6536.0–6535.5 eV denotes
transitions from the Mn–Cl bonds and Cl 3p orbitals. This peak can-
not be resolved in the SCH spectrum. It is interesting that the N1s
core hole favors the transition from the Cl atoms. The strongest peak

D2 in panel (b) has the same character as S1 (see Table S3), but
is red-shifted by ∼0.5 eV. This is the effect of the N1s core hole.
However, the N1s core hole has almost no effect on D3 since it
is essentially the same as S2. The Mn1s/Cl1s spectrum [panel (c)
in Fig. 3] is quite different from the other two spectra in the fig-
ure. The strongest peak D4 is of the same character as S1, but is
blue-shifted by about 0.8 eV. The small shoulder D5 is in the same
energy range of S1 but of totally different character: it mainly rep-
resents transitions from the Mn–Cl coordination bonding orbitals
(the Cl atom has not a core hole). D6 at ∼6532.8 eV is similar to
S2 in character, but is blue-shifted by ∼0.8 eV. The relatively strong
peak D7 at ∼6531.1 eV represents transitions from 3p orbitals of the
Cl with the 1s core hole, which is very different from D3 and S2 in
character.

For comparison, we study another high-spin Mn mononuclear
complex [Mn(III)(terpy)Cl3] (Mn_III-cplx, quintet). The calculated
Mn1s SCH and Mn1s/N1s, Mn1s/Cl1s DCH VtC-XES signals at the
Mn K-edge are shown in Fig. 4. As indicated in panels (a) and (b),
the Mn1s/N1s DCH VtC-XES signals are very different from the
Mn1s SCH counterpart. The strongest peak D1 is blue-shifted by
about 2.5 eV compared to S1! A MO analysis reveals that the strong
transitions in the broad peak S1 mainly involve MOs on the two
side pyridine rings, while strong transitions in D1 and D2 have sig-
nificant contributions from the Cl 3p orbitals and the MOs on the
middle pyridine ring (see Table S4 in the supplementary material).
This D1 peak resembles the D1 peak in Fig. 3 in MO character. The
huge shift of D1 indicates that the N1s core hole drastically changes
the local electronic structure around the Mn metal center and there
is much stronger strong hybridization between the N 2p and Mn
3d orbitals in Mn_III-cplx compared to Mn_III-cplx. Peak D4 is
similar to S2, and both represent transitions from Cl 3s orbitals.
D3 features with energies more than 2 eV higher than those of S2
also represent transitions from Cl 3s orbitals, but it is not seen in
the SCH spectrum and should be considered as the effect of the
N1s core hole. Because there are two chemically nonequivalent Cl
atoms in this complex, we chose to put the 1s core hole at one of
the Cl atoms perpendicular to the terpy plane, as labeled with an
asterisk symbol in panel (b) of Fig. 4. The Mn1s/Cl1s DCH spec-
trum has a very broad shoulder on the lower energy side of the
strongest peak D5, lacking characteristic features. The strong tran-
sitions above 6534 eV mainly involve Cl 3p orbitals, Mn–Cl and
Mn–N coordination bonding orbitals. The weak peak D7 is similar
to D4 and S2. D6 resembles D3 in MO character but is red-shifted
by ∼0.8 eV because its transition orbital is on the Cl atom with a core
hole.

From this analysis, we see that metal-ligand DCH VtC-XES can
have shifted or new features compared to conventional SCH VtC-
XES. These shifted or new features potentially contain additional
chemical information of the coordination bonds between the metal
center and ligands.

C. Localized and delocalized core hole models
When studying core holes on multiple chemically equivalent

atoms in a molecule, a question arises whether the core hole should
be considered as localized on one atom or delocalized to all equiva-
lent atoms. Chemically equivalent atoms are symmetric and a local-
ized core hole on one of them breaks the symmetry, leading to the
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FIG. 4. Calculated SCH and DCH Mn1s VtC-XES signals of
[Mn(III)(terpy)Cl3](Mn_III-cplx). All calculated spectra have been red-shifted
by 12.04 eV to be compared with the conventional SCH VtC-XES experiment63

and have been Lorentzian broadened by 1.2 eV. SCH and DCH spectra are
scaled differently for the convenience of plotting. Stick heights in different panels
are not calibrated. (a) Experimental and calculated SCH Mn1s VtC-XES signals.
Important features are labeled S1 and S2. (b) Calculated Mn1s/N1s DCH Mn1s
VtC-XES signals. Important features are labeled D1–4. The molecular structure of
Mn_III-cplx is also shown. The asterisk symbol on the Cl atom denotes the Cl1s
core hole site. (c) Calculated Mn1s/Cl1s DCH Mn1s VtC-XES signals. Important
features are labeled D5–7.

Löwdin’s symmetry lemma of Hartree-Fock theory.64 This core hole
localization and symmetry breaking issue has been raised and dis-
cussed in theoretical and experimental studies for decades. Bagus
and Schaeffer discovered that in diatomic molecules the error of
core ionization potentials from Hartree-Fock calculations could be
greatly reduced if a localized core hole model, rather than a delocal-
ized core hole model, is used.65 Cederbaum and Domcke pointed
out that in a decomposition of the core ionization potential, the
relaxation energy contribution is much larger than the correlation
energy contribution if a localized core hole model is used, while in
a delocalized core hole model, relaxation and correlation effects are

both important.66 This can be used to explain why the localized core
hole model works very well for calculating core ionization poten-
tials with independent particle theories such as Hartree-Fock. Since
these two seminal studies, more evidence favoring localized models
in determining core hole properties has emerged.67–71 The symme-
try breaking issue can be remedied by employing high-level electron
correlation methods such as MCSCF methods.72 A specific double
excitation configuration describing a core-core excitation coupled
to a valence-valence excitation under the symmetry restriction helps
one to reduce the symmetry breaking relaxation error.73 In exper-
iment, both localized and delocalized core holes can be selectively
detected.74,75

A complete comparison of localized/delocalized core hole mod-
els in DCH spectroscopy goes beyond the scope of this paper. Here,
we present only a special case of localized/delocalized ligand core
hole models in metal 1s/ligand 1s DCH VtC-XES. In our calcula-
tions reported in Sec. III B, although no symmetry was enforced,
we found that for the 1s core holes on light atoms such as N,
self-consistent field (SCF) calculations often converge to a delocal-
ized core hole state in which the core hole is almost equally dis-
tributed over all N atoms in the molecular complex. We note that
in our complexes the N atoms are not chemically equivalent and
this is an example of hole delocalization without strict symmetry.
However, for deeper Cl1s and metal 1s core holes, we did not see
core hole delocalization in the SCF calculations without symme-
try constraints. In order to steer the SCF calculation to our tar-
get localized core hole state, we must freeze all the N1s electrons
but one. Our strategy is to apply pseudopotentials to represent all
N 1s electrons but the target one. See Sec. II for computational
details.

The calculated Mn1s/N1s DCH Mn1s VtC-XES signals of
[Mn(II)(tpa)(NCS)2] (Mn_tpa-cplx, sextet) using the delocalized and
localized core hole models are shown in Fig. 5. We chose this com-
plex for our study because it has only N atoms in its coordination
sphere. We note that we did not impose any symmetry in our cal-
culations, so all the N atoms [including N6 and N7 in panel (b)] are
not equivalent in our optimized geometry. As we described above,
the signals in panels (a) and (b) of Fig. 5 were calculated with all-
electron basis sets and the signals in panels (c)–(h) of Fig. 5 were
calculated with pseudopotential basis sets, and a direct quantita-
tive comparison on the signals from the delocalized/localized core
hole models may be misleading. Therefore, we focus on the spec-
tral profiles in this section. From Figs. 5(a) and 5(b), we can see
despite the intensity difference between the shoulder peaks A and
A′, the Mn1s/delocalized N1s DCH VtC-XES signal is very simi-
lar to the conventional Mn1s SCH VtC-XES signal. However, the
spectral profiles of Mn1s/localized N1s DCH VtC-XES signals [pan-
els (c)–(h)] are different from those in panels (a) and (b). This is
understandable since a 1s core hole localized to individual N atoms
would induce a very different electron density redistribution from
that caused by a more spherical delocalized N1s core hole. We
also notice that in the localized core hole model different N1s core
holes lead to different DCH VtC-XES signals, which may be used
to probe the physical occurrence of localized DCH ionizations. An
easy inspection of the curves in panels (c)–(h) groups the N atoms
into 3 categories: (d) and (f) both have a flat shoulder in the low
energy range; (e), (g), and (h) all have mainly two broad strong
peaks; and (c) stands on its own because it has 3 major features. This
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FIG. 5. Calculated Mn1s/N1s
DCH Mn1s VtC-XES signals of
[Mn(II)(tpa)(NCS)2] [Mn_tpa-cplx, tpa
= Tris(2-pyridylmethyl)amine] from
the delocalized and localized core
hole models. All calculated spectra
have been red-shifted by 14.55 eV to
be compared with experiment63 and
have been Lorentzian broadened by
1.2 eV. SCH and DCH spectra are
scaled differently for the convenience of
plotting. Stick heights in different panels
are not calibrated. (a) Experimental
and calculated SCH Mn1s VtC-XES
signals. (b) Calculated Mn1s/N1s DCH
Mn1s VtC-XES signals with N1s core
hole delocalized to all N atoms. The
molecular structure and N atom labeling
is also shown. Color code: purple, Mn;
blue, N; yellow, S; dark gray, C; light
gray, H. [(c)–(h)] Calculated Mn1s/N1s
DCH Mn1s VtC-XES signals with the
N1s core hole localized at the specific
N atoms as labeled on the molecular
structure in panel (b). The dotted curve
in panel (h) represents the average of all
the spectra in panels (c)–(h).

3-group classification is chemically intuitive: N3 and N5 [see panel
(b) for labeling] belong to the –NCS group; N4, N6, N7 are pyri-
dine nitrogens and N2 is the only amine nitrogen atom. Without
experimental support, one has difficulty to judge which core hole
model gives more reasonable DCH VtC-XES signals, but they dif-
fer qualitatively in the spectral profile: in all curves calculated with
the delocalized core hole model and the conventional SCH VtC-
XES experiment, the higher energy peak is stronger than the lower
energy peak (C0 > B0, C > B, . . .), while for the curves calculated
with the localized core hole model, there are more cases of the lower
energy peak stronger than the higher energy peak; thus, the aver-
age spectrum has a stronger lower energy peak [see the dotted curve
in panel (h), suppose all N atoms have equal chances for ionization].
Checking the relative intensities of the major peaks in the higher and
lower energy ranges in the experimental DCH XES spectra would
give an easy test of both the delocalized and localized core hole
models.

IV. CONCLUSIONS AND BRIEF OUTLOOK
In this paper, we theoretically explored ts-DCH metal 1s/metal

1s and metal 1s/ligand 1s DCH VtC-XES of representative transi-
tion metal model complexes. DCH VtC-XES is a new form of X-ray
nonlinear spectroscopy enabled by the rapid development of XFELs.
Our simulations show that through the perturbation introduced by
a second core hole near the studied core hole, DCH VtC-XES can
go beyond the conventional SCH VtC-XES techniques and provide
further information on the local electronic structure of the core holes
and especially the interaction between the two atoms with core holes.
In the near future, DCH VtC-XES has the potential to become a new

research tool in transition metal complex chemistry and ultrafast
science studies.

Generally multiple ionization can happen either at the same
atom or at different atoms. It is difficult to selectively ionize two
specific atoms if there are multiple atoms of the same element in
a molecule. Except for the case of adjacent two-site DCHs, which
is the main topic of this study, double core holes can be created
either at the same atomic site or at different atomic sites which are
not necessarily adjacent. XES signals from different types of DCHs
can be selectively detected. This is because two-site DCH emission
lines are significantly different from single-site DCH emission lines
in energy (the two types of lines could be tens or even hundreds
of electronvolts apart, depending on how deep the core holes are).
In addition, the energy shifts and intensity changes of DCH XES
signals compared to their corresponding SCH XES signals disap-
pear if the created two core holes are not close; thus, those non-
neighboring DCHs produce almost identical XES spectra to those of
SCHs and are eliminated as the SCH signal background.29 In other
words, the single-site DCH signal is outside the energy window cal-
culated and/or detected, and only those adjacent DCHs contribute
to the studied DCH XES signals. In summary, DCHs might be cre-
ated at different sites in systems but one can selectively detect the
XES signals from specific types of DCHs (single-site or adjacent
two-site).

Finally, VtC-XES is only the starting point of theoretical
DCH spectroscopy. Fast and reliable relativistic quantum chem-
istry methods describing 2p core holes with spin-orbit coupling and
real-time simulations on ultrafast core hole dynamics are needed
for a comprehensive understanding of other DCH spectroscopy
techniques.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the plots of the molecular
orbitals with dominant contributions to the representative emis-
sion transitions of the different features discussed in the main text
and an example NWChem input file with notes for DCH VtC-XES
calculations.
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